OTICON | **Jet** Technical data sheet

miniRITE / miniRITE T

		Jet 1	Jet 2
Speech Understading	Multiband Adaptive Directionality	•	•
	Noise Reduction	•	•
	Single Compression	•	•
	Frequency lowering	Speech Rescue™	-
Sound Quality	Fitting Bandwidth*	8 kHz	8 kHz
	Processing Channels	48	48
Listening Comfort	Feedback Management	Feedback shield LX	Feedback shield LX
	Transient Noise Management	On/Off	-
	Wind Noise Management	•	•
Personalisation & Optimising Fitting	Fitting Bands	10	8
	Fitting Formulas	NAL-NL1/NAL-NL2, DSL v5.0	NAL-NL1/NAL-NL2, DSL v5.0
Connecting to the world	Direct streaming**	•	•
	Oticon ON app & Oticon RemoteCare app	•	•
	ConnectClip	•	•
	EduMic	•	•
	Remote Control 3.0	•	•
	TV Adapter 3.0	•	•
	Phone Adapter 2.0	•	•
	Tinnitus SoundSupport™	•	•

^{*} Bandwidth accessible for gain adjustments during fitting ** From compatible iPhone®, iPad®, iPod touch® devices

Operating Conditions

Temperature: +1°C to +40°C (34°F to 104°F) Humidity: 5% to 93% relative humidity, non-condensing

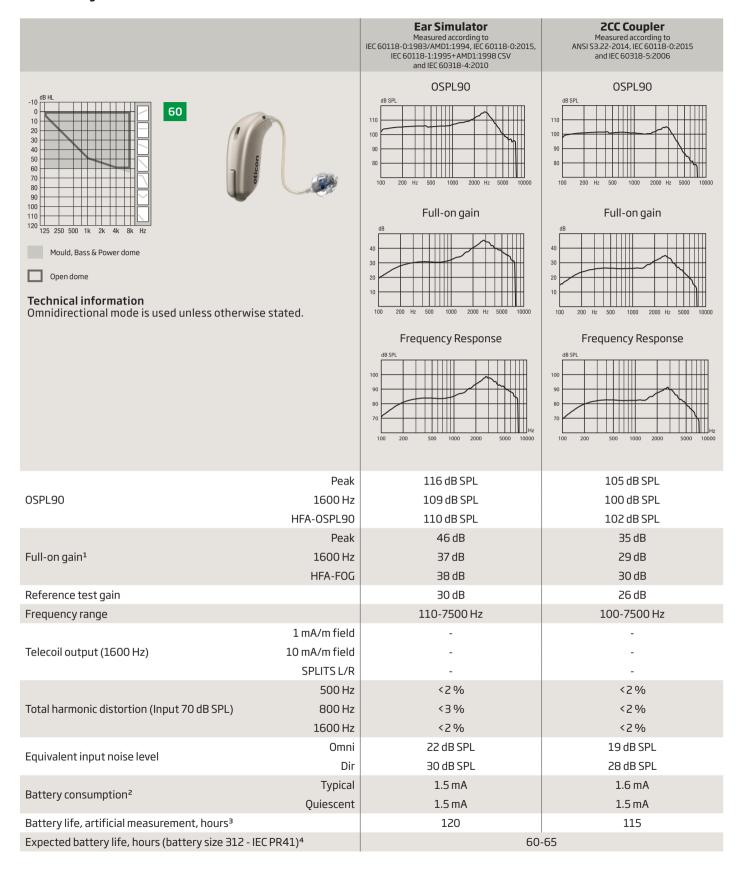
Atmospheric pressure: 700 hPa to 1060 hPa

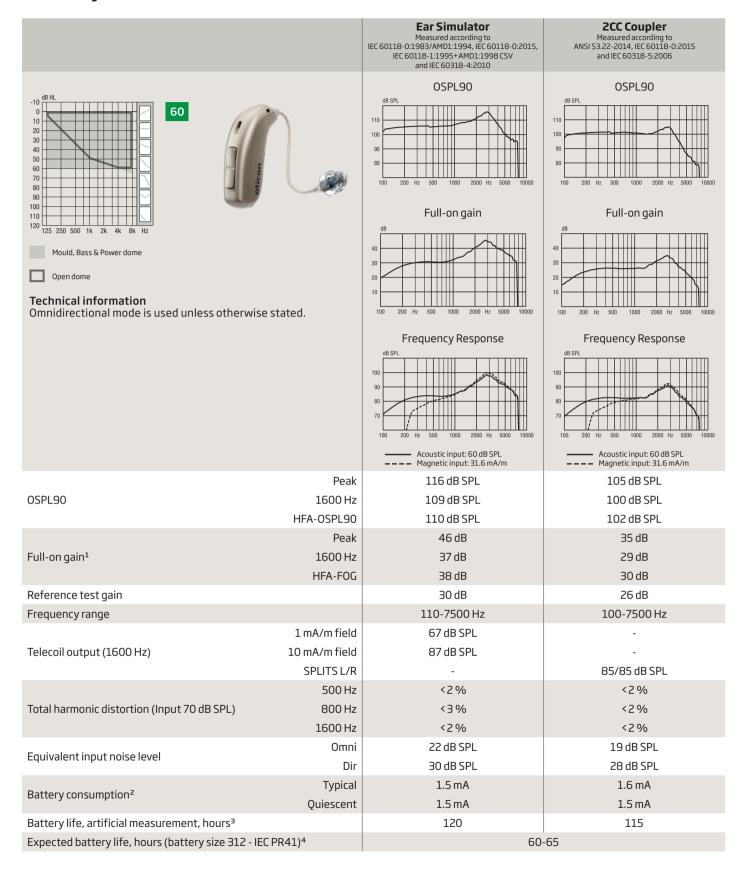
Storage and transportation conditions

Temperature and humidity should not exceed the below limits for extended periods during transportation and storage.

Transportation
Temperature: -25°C to +60°C (-13°F to 140°F) Humidity: 5% to 93% relative humidity, non-condensing Atmospheric pressure: 700 hPa to 1060 hPa

Temperature: -25°C to +60°C (-13°F to 140°F)
Humidity: 5% to 93% relative humidity, non-condensing Atmospheric pressure: 700 hPa to 1060 hPa


Apple, the Apple logo, iPhone, iPad, and iPod touch are trademarks of Apple Inc., registered in the U.S. and other countries.

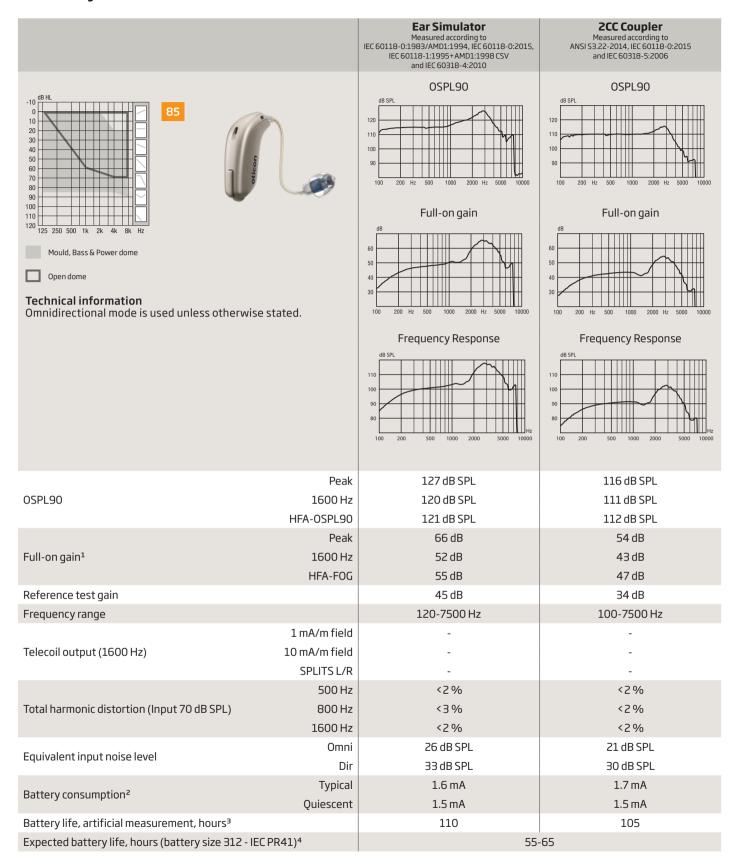

¹⁾ Measured with the gain control of the hearing aids set to their full-on position minus 20 dB and with an input SPL of 70 dB. This is to

obtain a gain response equal to the full-on gain response from e.g. IEC 60118-0:1983+A1:1994 but without influence of feedback.

2) Battery current is measured according to IEC 60118-0:1983/AMD1:1994 §7.11, IEC 60118-0:2015 §7.7 and ANSI S3.22:2014 §6.13 after a settling time of minimum 3 minutes.

³⁾ Based on the standardised battery consumption measurement (e.g. IEC 60118-0:1983/AMD1:1994). The actual battery life depends on battery quality, use pattern, active feature set, hearing loss and sound environment.

⁴⁾ Real usage battery life is shown as an estimated interval based on mixed use cases with variable amplification settings and variable input levels, incl. direct stereo streaming from a TV (25% of the time) and streaming from a mobile phone (6% of the time).

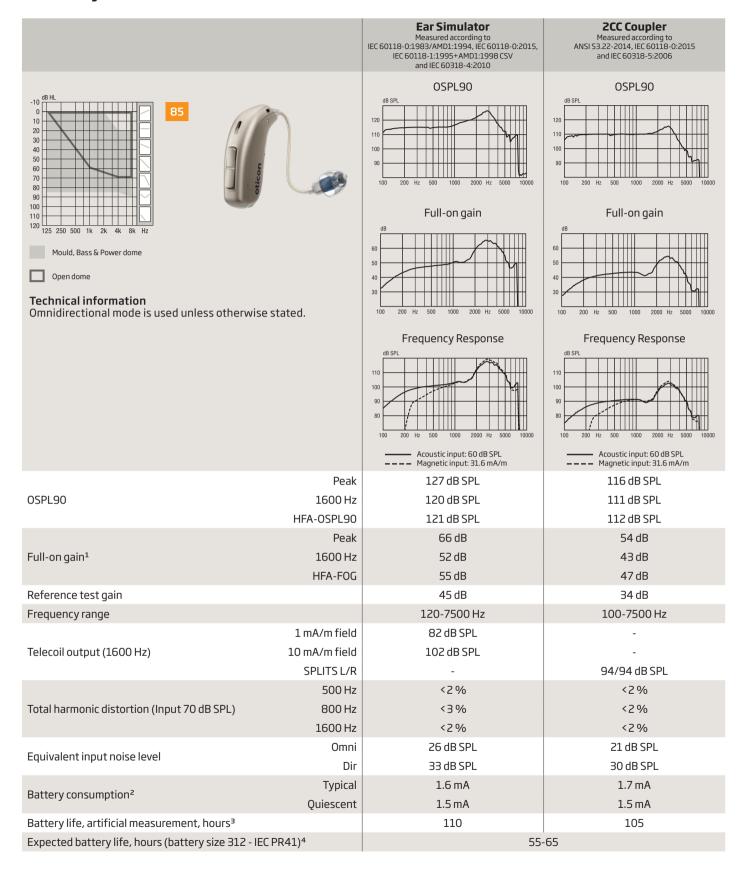

¹⁾ Measured with the gain control of the hearing aids set to their full-on position minus 20 dB and with an input SPL of 70 dB. This is to

obtain a gain response equal to the full-on gain response from e.g. IEC 60118-0:1983+A1:1994 but without influence of feedback.

2) Battery current is measured according to IEC 60118-0:1983/AMD1:1994 §7.11, IEC 60118-0:2015 §7.7 and ANSI S3.22:2014 §6.13 after a settling time of minimum 3 minutes.

³⁾ Based on the standardised battery consumption measurement (e.g. IEC 60118-0:1983/AMD1:1994). The actual battery life depends on battery quality, use pattern, active feature set, hearing loss and sound environment.

⁴⁾ Real usage battery life is shown as an estimated interval based on mixed use cases with variable amplification settings and variable input levels, incl. direct stereo streaming from a TV (25% of the time) and streaming from a mobile phone (6% of the time).

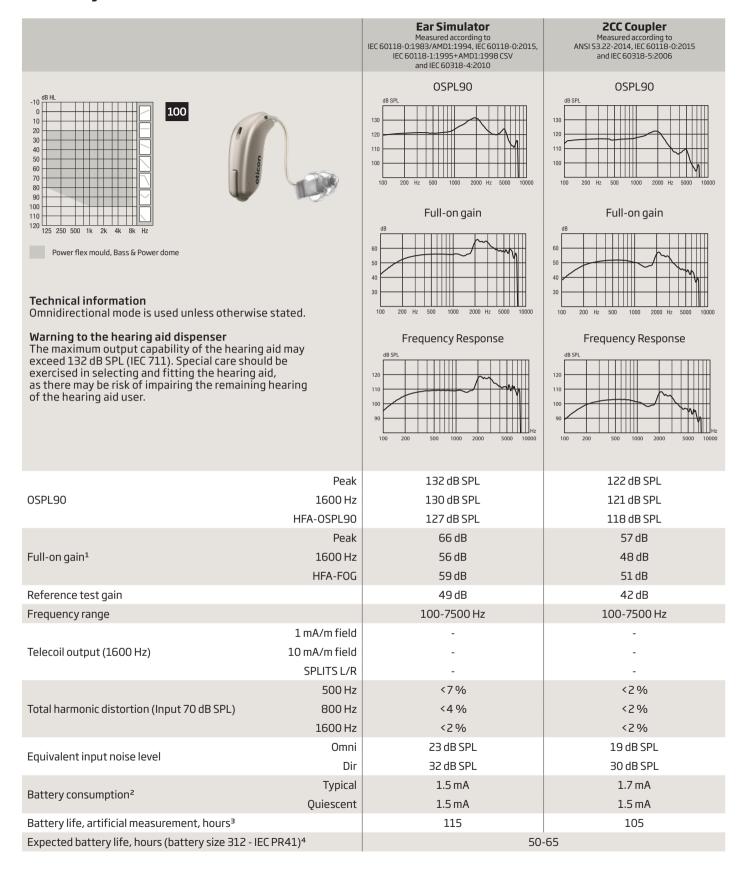

¹⁾ Measured with the gain control of the hearing aids set to their full-on position minus 20 dB and with an input SPL of 70 dB. This is to

obtain a gain response equal to the full-on gain response from e.g. IEC 60118-0:1983+A1:1994 but without influence of feedback.

2) Battery current is measured according to IEC 60118-0:1983/AMD1:1994 §7.11, IEC 60118-0:2015 §7.7 and ANSI S3.22:2014 §6.13 after a settling time of minimum 3 minutes.

³⁾ Based on the standardised battery consumption measurement (e.g. IEC 60118-0:1983/AMD1:1994). The actual battery life depends on battery quality, use pattern, active feature set, hearing loss and sound environment.

⁴⁾ Real usage battery life is shown as an estimated interval based on mixed use cases with variable amplification settings and variable input levels, incl. direct stereo streaming from a TV (25% of the time) and streaming from a mobile phone (6% of the time).

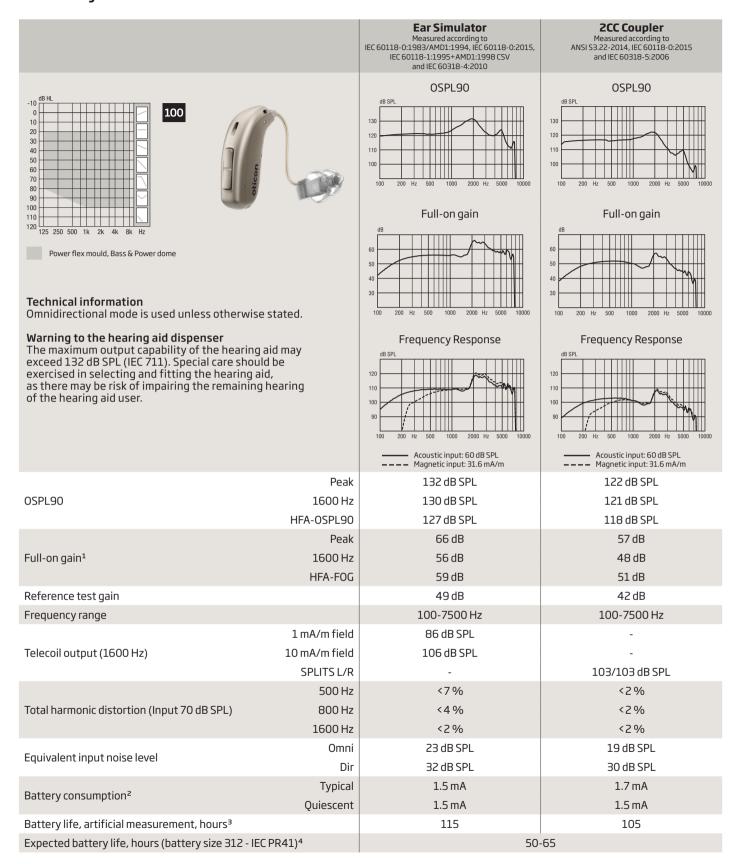

¹⁾ Measured with the gain control of the hearing aids set to their full-on position minus 20 dB and with an input SPL of 70 dB. This is to

obtain a gain response equal to the full-on gain response from e.g. IEC 60118-0:1983+A1:1994 but without influence of feedback.

2) Battery current is measured according to IEC 60118-0:1983/AMD1:1994 §7.11, IEC 60118-0:2015 §7.7 and ANSI S3.22:2014 §6.13 after a settling time of minimum 3 minutes.

³⁾ Based on the standardised battery consumption measurement (e.g. IEC 60118-0:1983/AMD1:1994). The actual battery life depends on battery quality, use pattern, active feature set, hearing loss and sound environment.

⁴⁾ Real usage battery life is shown as an estimated interval based on mixed use cases with variable amplification settings and variable input levels, incl. direct stereo streaming from a TV (25% of the time) and streaming from a mobile phone (6% of the time).

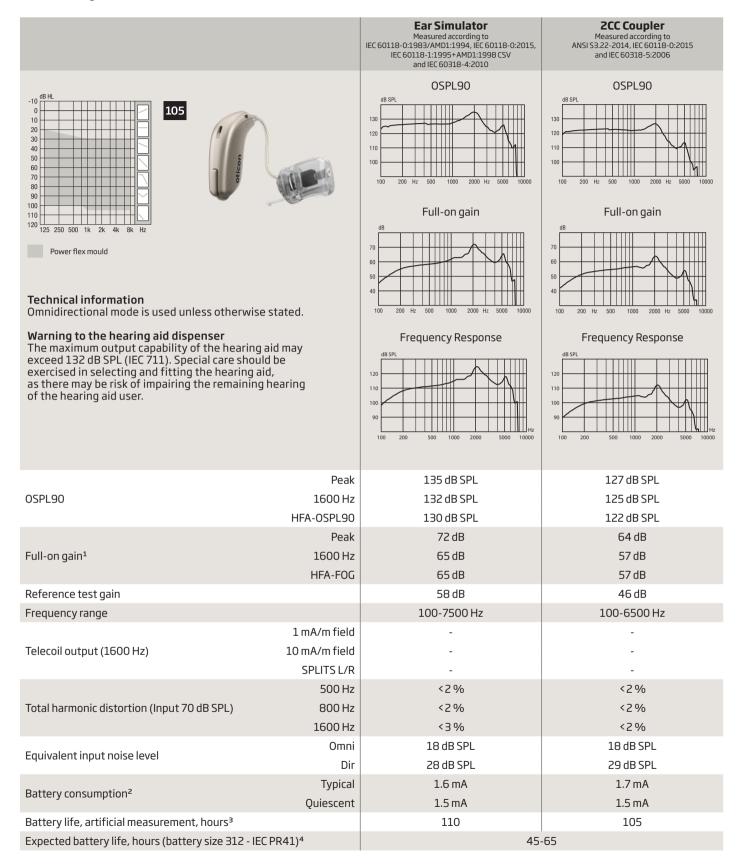

¹⁾ Measured with the gain control of the hearing aids set to their full-on position minus 20 dB and with an input SPL of 70 dB. This is to

obtain a gain response equal to the full-on gain response from e.g. IEC 60118-0:1983+A1:1994 but without influence of feedback.

2) Battery current is measured according to IEC 60118-0:1983/AMD1:1994 §7.11, IEC 60118-0:2015 §7.7 and ANSI S3.22:2014 §6.13 after a settling time of minimum 3 minutes.

³⁾ Based on the standardised battery consumption measurement (e.g. IEC 60118-0:1983/AMD1:1994). The actual battery life depends on battery quality, use pattern, active feature set, hearing loss and sound environment.

⁴⁾ Real usage battery life is shown as an estimated interval based on mixed use cases with variable amplification settings and variable input levels, incl. direct stereo streaming from a TV (25% of the time) and streaming from a mobile phone (6% of the time).

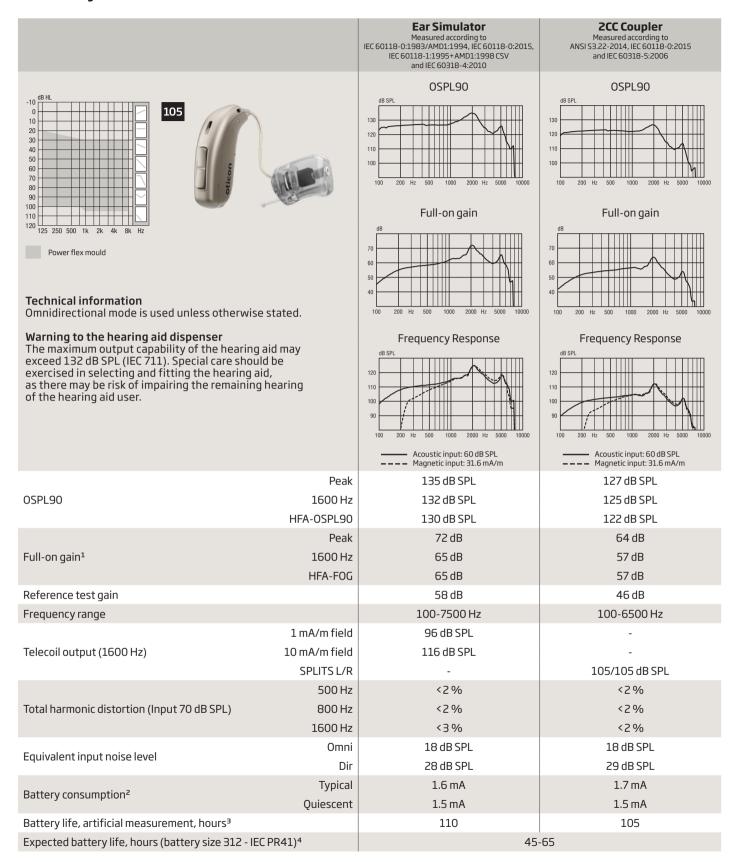

¹⁾ Measured with the gain control of the hearing aids set to their full-on position minus 20 dB and with an input SPL of 70 dB. This is to

obtain a gain response equal to the full-on gain response from e.g. IEC 60118-0:1983+A1:1994 but without infl uence of feedback.

2) Battery current is measured according to IEC 60118-0:1983/AMD1:1994 §7.11, IEC 60118-0:2015 §7.7 and ANSI S3.22:2014 §6.13 after a settling time of minimum 3 minutes.

³⁾ Based on the standardised battery consumption measurement (e.g. IEC 60118-0:1983/AMD1:1994). The actual battery life depends on battery quality, use pattern, active feature set, hearing loss and sound environment.

⁴⁾ Real usage battery life is shown as an estimated interval based on mixed use cases with variable amplification settings and variable input levels, incl. direct stereo streaming from a TV (25% of the time) and streaming from a mobile phone (6% of the time).


¹⁾ Measured with the gain control of the hearing aids set to their full-on position minus 20 dB and with an input SPL of 70 dB. This is to

obtain a gain response equal to the full-on gain response from e.g. IEC 60118-0:1983+A1:1994 but without infl uence of feedback.

2) Battery current is measured according to IEC 60118-0:1983/AMD1:1994 §7.11, IEC 60118-0:2015 §7.7 and ANSI S3.22:2014 §6.13 after a settling time of minimum 3 minutes.

³⁾ Based on the standardised battery consumption measurement (e.g. IEC 60118-0:1983/AMD1:1994). The actual battery life depends on battery quality, use pattern, active feature set, hearing loss and sound environment.

⁴⁾ Real usage battery life is shown as an estimated interval based on mixed use cases with variable amplification settings and variable input levels, incl. direct stereo streaming from a TV (25% of the time) and streaming from a mobile phone (6% of the time).

¹⁾ Measured with the gain control of the hearing aids set to their full-on position minus 20 dB and with an input SPL of 70 dB. This is to

obtain a gain response equal to the full-on gain response from e.g. IEC 60118-0:1983+A1:1994 but without influence of feedback.

2) Battery current is measured according to IEC 60118-0:1983/AMD1:1994 §7.11, IEC 60118-0:2015 §7.7 and ANSI S3.22:2014 §6.13 after a settling time of minimum 3 minutes.

³⁾ Based on the standardised battery consumption measurement (e.g. IEC 60118-0:1983/AMD1:1994). The actual battery life depends on battery quality, use pattern, active feature set, hearing loss and sound environment.

⁴⁾ Real usage battery life is shown as an estimated interval based on mixed use cases with variable amplification settings and variable input levels, incl. direct stereo streaming from a TV (25% of the time) and streaming from a mobile phone (6% of the time).

Notes

Notes

Headquarters Oticon A/S Kongebakken 9 DK-2765 Smørum Denmark

